Intrinsic lifetimes of the excited state of DNA and RNA bases.

نویسندگان

  • Hyuk Kang
  • Kang Taek Lee
  • Boyong Jung
  • Yeon Jae Ko
  • Seong Keun Kim
چکیده

The lifetimes of the excited state of free nucleobases were measured in the gas phase for the first time. They are, respectively, 1.0 and 0.8 ps for the purine bases adenine (shown above) and guanine and 3.2, 2.4, and 6.4 ps for the pyrimidine bases cytosine, uracil, and thymine at 267 nm. The longer lifetimes of the pyrimidine bases may be associated with their higher propensity toward photodegradation, especially in the case of thymine. The ultrashort lifetime of nucleobases conventionally known in solution was found to be an intrinsic molecular property due to extremely facile internal conversion, and therefore the lifetime should be largely independent of the medium at this energy, that is, whether in vacuo, in solution, or in vivo. The evolutionary selection of nucleobases as the durable carriers of genetic information is suggested to be due to their inherent immunity from photochemical reactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excited states of protonated DNA/RNA bases.

The very fast relaxation of the excited states to the ground state in DNA/RNA bases is a necessary process to ensure the photostability of DNA and its rate is highly sensitive to the tautomeric form of the bases. Protonation of the bases plays a crucial role in many biochemical and mutagenic processes and it can result in alternative tautomeric structures, thus making important the knowledge of...

متن کامل

Non-radiative processes in protonated diazines, pyrimidine bases and an aromatic azine.

The excited state lifetimes of DNA bases are often very short due to very efficient non-radiative processes assigned to the ππ*-nπ* coupling. A set of protonated aromatic diazine molecules (pyridazine, pyrimidine and pyrazine C4H5N2(+)) and protonated pyrimidine DNA bases (cytosine, uracil and thymine), as well as the protonated pyridine (C5H6N(+)), have been investigated. For all these molecul...

متن کامل

Base Stacking Configuration is a Major Determinant of Excited State Dynamics in A.T DNA and LNA

Base stacking plays an important role in excited state dynamics in polynucleotides. However, it is poorly understood how stacking geometries influence the formation of and relaxation from excites states. Natural poly(dA)·poly(dT) adopts a B-form structure with extensive geometrical overlap between adjacent stacked adenines while the synthetic, locked ribose analogue (LNA), adopts the A-form str...

متن کامل

Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution.

The femtosecond transient absorption technique was used to study the relaxation of excited electronic states created by absorption of 267-nm light in all of the naturally occurring pyrimidine DNA and RNA bases in aqueous solution. The results reveal a surprising bifurcation of the initial excited-state population in <1 ps to two nonradiative decay channels within the manifold of singlet states....

متن کامل

UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases.

Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent monon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 44  شماره 

صفحات  -

تاریخ انتشار 2002